Zero-Shot Cost Models for Distributed Stream Processing

16th ACM International Conference on Distributed and Event-based Systems (DEBS) Copenhagen 2022

Roman Heinrich¹, Manisha Luthra², Harald Kornmayer¹, Carsten Binnig² ¹DHBW Mannheim, ²TU Darmstadt

Annhein

Distributed Stream Processing Systems (DSPS)

Optimization tasks for DSPS

Cost models for DSPS

Limitations of existing approaches

[2] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, "I-scheduler: Iterative scheduling for distributed stream processing systems," Future Generation Computing ystems, vol. 117, pp. 219–233, 2021.
[3] T. Li, Z. Xu, J. Tang, and Y. Wang, "Model-free control for distributed stream data processing using deep reinforcement learning," PVLDB, vol. 11, no. 6, p. 705–718, 2018.

Workload-driven vs. zero-shot models

No generalization possible
Costly re-training for a new workload is required

Generalization to unseen streams, queries and hardware

V No retraining required

Zero-shot model architecture

User query f "What is the most trending facebook video of the last 60 min?"

Transferable features

Training & inference methodology

Graph representation for GNNs allow predictions for flexible & unseen queries

Evaluation of the zero-shot model

- Set-up: 10 clusters (each 10 nodes) with Apache Storm v2.2.0
- Cost metrics: end-to-end latency & throughput
- Metric: q-error
 - $q(c, \hat{c}) = max(c/\hat{c}, \hat{c}/c)$
 - reporting median and 95percentile
 - \circ q-1: perfect estimate

Interpolation for wor	kload	ls & placements				
median <u>95th</u>						
Latency:	1.13	3.19				
Throughput:	1.16	3.50				

Extrapolation for unseen benchmarks (DSPBench^[4])

Benchmark	Latency		Throughput	
	median	95th	median	95th
Advertisement (clicks)	1.51	1.53	1.38	1.39
Advertisement (imp.)	1.51	1.52	1.38	1.39
Advertisement (join)	1.99	2.06	1.55	2.16
Spike Detection	1.01	1.04	1.73	1.94
Smart Grid (local)	1.21	1.23	1.92	1.92
Smart Grid (global)	1.20	1.66	1.91	1.91

Zero-shot model for unseen workloads

11

Conclusion & outlook

Our zero-shot cost model...

- ...is generalizable and workload independent
- ...requires an one-time training effort
- ...predicts accurately and robustly for seen & unseen workloads

V can be used as a main building block in DSPS optimization tasks

Open questions on zero-shot models:

- How to model hardware properties more precisely?
- How to featurize co-location of operators?
- How to make use of the cost model in specific optimization tasks like providing elasticity?

Thank you for your attention!

16th ACM International Conference on Distributed and Event-based Systems (DEBS) Copenhagen 2022

Roman Heinrich¹, Manisha Luthra², Harald Kornmayer¹, Carsten Binnig² ¹DHBW Mannheim, ²TU Darmstadt

Mannheim

Zero-Shot model for unseen workloads

Extrapolation for unseen query structures

	Latency		Throughput	
	median	95th	median	95th
2-filter chain	1.14	2.41	1.59	3.65
3-filter chain	2.67	46.34	2.82	27.78
4-filter chain	7.33	54.68	3.94	59.73
4-way joins	1.95	24.30	1.33	20.79
5-way joins	1.91	26.67	1.35	21.87